Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function.
نویسندگان
چکیده
While it is well established that plants associating with arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi cycle carbon (C) and nutrients in distinct ways, we have a limited understanding of whether varying abundance of ECM and AM plants in a stand can provide integrative proxies for key biogeochemical processes. We explored linkages between the relative abundance of AM and ECM trees and microbial functioning in three hardwood forests in southern Indiana, USA. Across each site's 'mycorrhizal gradient', we measured fungal biomass, fungal : bacterial (F : B) ratios, extracellular enzyme activities, soil carbon : nitrogen ratio, and soil pH over a growing season. We show that the percentage of AM or ECM trees in a plot promotes microbial communities that both reflect and determine the C to nutrient balance in soil. Soils dominated by ECM trees had higher F : B ratios and more standing fungal biomass than AM stands. Enzyme stoichiometry in ECM soils shifted to higher investment in extracellular enzymes needed for nitrogen and phosphorus acquisition than in C-acquisition enzymes, relative to AM soils. Our results suggest that knowledge of mycorrhizal dominance at the stand or landscape scale may provide a unifying framework for linking plant and microbial community dynamics, and predicting their effects on ecological function.
منابع مشابه
Mycorrhizal phosphorus economies: a field test of the MANE framework.
The conquest of the land by plants, c. 470 million years ago, was made possible by the arbuscular mycorrhizal symbiosis (Selosse et al., 2015). In fact, the evolution of that symbiosis was so successful that plant roots have to fit into an arbuscularmycorrhizal world. But that conclusion at the same time hides a paradox. If the arbuscular mycorrhizal symbiosis was so successful, which empty nic...
متن کاملRoot and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest.
Tropical forests have high rates of soil carbon cycling, but little information is available on how roots, arbuscular mycorrhizal fungi (AMF), and free-living microorganisms interact and influence organic matter mineralization in these ecosystems. We used mesh ingrowth cores and isotopic tracers in phospholipid fatty acid biomarkers to investigate the effects of roots and AMF mycelia on (1) mic...
متن کاملElevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana
Like other N-fixing invasive species in Hawaii, Falcataria moluccana dramatically alters forest structure, litterfall quality and quantity, and nutrient dynamics. We hypothesized that these biogeochemical changes would also affect the soil microbial community and the extracellular enzymes responsible for carbon and nutrient mineralization. Across three sites differing in substrate texture and a...
متن کاملThe Effect of Fruit Trees Pruning Waste Biochar on some Soil Biological Properties under Rhizobox Conditions
The pyrolysis of fruit trees Pruning waste to be converted to biochar with microbial inoculation is a strategy improving the biological properties in calcareous soils. In order to investigate the biochar effect on some soil biological properties of the soil in the presence of microorganisms, a factorial experiment was carried out in a completely randomized design in the rhizobox under greenhous...
متن کاملRoot morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.
Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The New phytologist
دوره 214 1 شماره
صفحات -
تاریخ انتشار 2017